Resampling Methods for Spatial Regression Models under a Class of Stochastic Designs
نویسندگان
چکیده
In this paper we consider the problem of bootstrapping a class of spatial regression models when the sampling sites are generated by a (possibly nonuniform) stochastic design and are irregularly spaced. It is shown that the natural extension of the existing block bootstrap methods for grid spatial data does not work for irregularly spaced spatial data under nonuniform stochastic designs. A variant of the blocking mechanism is proposed. It is shown that the proposed block bootstrap method provides a valid approximation to the distribution of a class of M -estimators of the spatial regression parameters. Finite sample properties of the method are investigated through a moderately large simulation study and a real data example is given to illustrate the methodology.
منابع مشابه
Comparing Bivariate and Multivariate Methods in Landslide Sustainability Mapping: A Case Study of Chelchay Watershed
1- INTRODUCTION In the last decades, due to human interventions and the effect of natural factors, the occurrence of landslide increased especially in the north of Iran, where the amount of rainfall is suitable for the landslide occurrence. In order to manage and mitigate the damages caused by landslide, the potential landslide-prone areas should be identified. In landslide susceptibili...
متن کاملSpatial Varying Coefficient Regression Model For Relative Risk Factors of Esophageal Cancer Patients
In conventional methods for spatial survival data modeling, it is often assumed that the coefficients of explanatory variables in different regions have a constant effect on survival time. Usually, the spatial correlation of data through a random effect is also included in the model. But in many practical issues, the factors affecting survival time do not have the same effects in different regi...
متن کاملRenormalization Analysis of Interacting Spatial Stochastic Systems
We study large space-time scale properties of interacting spatial stochas-tic models arising in population genetics. Among those models are classical branching systems and resampling systems (interacting Feller's branching diiu-sions and interacting Fleming-Viot processes). We consider one-type, multi-type and 1-type populations. The tool of analysis is renormalization. This technique allows to...
متن کاملLiu Estimates and Influence Analysis in Regression Models with Stochastic Linear Restrictions and AR (1) Errors
In the linear regression models with AR (1) error structure when collinearity exists, stochastic linear restrictions or modifications of biased estimators (including Liu estimators) can be used to reduce the estimated variance of the regression coefficients estimates. In this paper, the combination of the biased Liu estimator and stochastic linear restrictions estimator is considered to overcom...
متن کاملSpatial Regression in the Presence of Misaligned data
In this paper, four approaches are presented to the problem of fitting a linear regression model in the presence of spatially misaligned data. These approaches are plug-in method, simulation, regression calibration and maximum likelihood. In the first two approaches, with modeling the correlation between the explanatory variable, prediction of explanatory variable is determined at sites...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006